Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

C. R. Girija,^a Noor Shahina Begum,^a* M. A. Sridhar,^b N. K. Lokanath^b and J. S. Prasad^b

^aDepartment of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India, and ^bDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka, India

Correspondence e-mail: noorsb@rediffmail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.075 wR factor = 0.272 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Dimethylamino-3-dimethyliminio-1-(p-methylphenyl)prop-1-ene perchlorate

In the title compound, $C_{14}H_{21}N_2^+ \cdot CIO_4^-$, the planar vinamidinium chain forms a dihedral angle of 84.0 (1)° with the benzene ring. The molecular packing is stabilized by C– $H \cdot \cdot \cdot O$ interactions. Received 11 February 2004 Accepted 9 March 2004 Online 24 March 2004

Comment

The title compound, (I), was studied, as a member of a series of vinamidinium systems, to explore the possibility of these compounds showing non-linear optical properties.

The molecular structure of (I) with the atom-numbering scheme is shown in Fig. 1. The title molecule is non-planar; the two planar segments, *viz*. the benzene ring and the vinamidinium chain (N1/C1/C2/C3/N2), have a dihedral angle of 84.0 (1)°. The N-C bonds (see Table 1) at both ends of the vinamidinium chain have lengths intermediate between a single and double bond, as a result of delocalization of the electrons. Similar features have been observed in a related structure (Girija *et al.*, 2004).

ORTEP-3 (Farrugia, 1997) diagram of the title compound, showing 50%

probability displacement ellipsoids and the atom-numbering scheme.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Figure 1

Figure 2

The molecular packing in the unit cell, viewed down the b axis.

The crystal structure of (I) is stabilized by a number of C-H···O interactions (Table 2), including two bifurcated C- $H \cdots O$ interactions.

The compound does not exhibit second harmonic generation (SHG), since it has crystallized in a centrosymmetric space group.

Experimental

A formylating agent was obtained by the action of phosphoryl chloride and dimethylformamide in chloroform. To this reagent, *p*-methylacetophenone, dissolved in the same solvent, was added. The mixture was heated under reflux, extracted with chloroform and treated with a saturated solution of sodium perchlorate in water. The compound was filtered off and dried over P₂O₅ (Holy et al., 1965). Crystals were grown from ethanol at room temperature by slow evaporation.

Crystal data

$C H N^+ C O^-$	D not measured
$C_{14} I_{21} I_{2} \cdot C_{104}$	D_m not measured
$M_r = 316.78$	$MoK\alpha$ radiation
Monoclinic, $P2_1/a$	Cell parameters from 23
a = 11.601 (3) Å	reflections
b = 12.409 (2) Å	$\theta = 3.5 - 4.4^{\circ}$
c = 12.664 (4) Å	$\mu = 0.25 \text{ mm}^{-1}$
$\beta = 115.501 \ (18)^{\circ}$	T = 293 (2) K
V = 1645.4 (8) Å ³	Prism, colourless
Z = 4	$0.3 \times 0.2 \times 0.1 \text{ mm}$
$D_{\rm m} = 1.279 {\rm Mg}{\rm m}^{-3}$	

Data collection

Rigaku AFC-7S diffractometer	$h = 0 \rightarrow 13$
$\omega/2\theta$ scans	$k = 0 \rightarrow 14$
3045 measured reflections	$l = -15 \rightarrow 13$
2890 independent reflections	3 standard reflections
1649 reflections with $I > 2\sigma(I)$	every 150 reflections
$R_{\rm int} = 0.100$	intensity decay: 10.4%
$\theta_{\rm max} = 25.0^{\circ}$	
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1546P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.075$	+ 0.6164P]
$wR(F^2) = 0.272$	where $P = (F_o^2 + 2F_c^2)/3$

 $wR(F^2) = 0.272$ S = 1.082890 reflections 196 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

N1-C1	1.319 (6)	N2-C13	1.476 (8)
N1-C10	1.474 (6)	C1-C2	1.402 (6)
N1-C11	1.459 (7)	C1-C4	1.491 (6)
N2-C3	1.316 (6)	C2-C3	1.383 (7)
N2-C12	1.446 (7)		
C1-N1-C10	122.2 (4)	C12-N2-C13	116.5 (4)
C1-N1-C11	123.2 (4)	N1-C1-C2	122.2 (4)
C10-N1-C11	114.6 (4)	N1-C1-C4	116.8 (4)
C3-N2-C12	123.8 (4)	N2-C3-C2	126.4 (4)
C3-N2-C13	119.6 (5)		
N1-C1-C4-C9	95.5 (5)	N1-C1-C4-C5	-84.7 (5)
C2-C1-C4-C5	95.1 (6)	C2-C1-C4-C9	-84.7 (5)

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^2$ $\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

-3

Extinction correction: SHELXL97 Extinction coefficient: 0.024 (6)

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C2-H2···O2	0.93	2.81	3.740 (6)	177
C10−H10C···O4	0.96	2.55	3.465 (9)	159
$C12 - H12B \cdots O2$	0.96	2.75	3.599 (9)	147
C12−H12B···O3	0.96	2.95	3.750 (8)	141
$C5-H5\cdots O1^i$	0.93	2.71	3.589 (7)	159
$C5-H5\cdots O2^{i}$	0.93	2.84	3.643 (8)	146
C6-H6···O1 ⁱⁱ	0.93	2.72	3.601 (6)	158
$C14-H14A\cdots O4^{ii}$	0.96	2.85	3.796 (8)	168
C8−H8···O1 ⁱⁱⁱ	0.93	2.93	3.754 (8)	148
$C9-H9\cdots O1^{iv}$	0.93	2.82	3.458 (6)	127
$C10-H10A\cdots O4^{v}$	0.96	2.80	3.725 (10)	163
$C13-H13A\cdots O3^{vi}$	0.96	2.94	3.740 (8)	142
$C12-H12A\cdots O3^{vi}$	0.96	2.52	3.356 (9)	145
$C12-H12C\cdots O4^{vii}$	0.96	2.51	3.416 (7)	156

Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1 + x, y, 1 + z; (iii) $\frac{1}{2} + x, \frac{1}{2} - y, 1 + z$; (iv) $\frac{1}{2} - x, \frac{1}{2} + y, 1 - z$; (v) $\frac{1}{2} + x, \frac{1}{2} - y, z$; (vi) -x, -y, 1 - z; (vii) $\frac{1}{2} - x, y - \frac{1}{2}, 1 - z$.

H atoms were positioned geometrically (C-H = 0.93-0.96 Å) and allowed to ride on their parent atoms, with $U_{iso}(H)$ set at $1.5U_{eq}(C)$ for the methyl H atoms and at $1.2U_{eq}(C)$ for the other H atoms. A rotating group model was used for the methyl groups.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: TEXSAN; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 1990).

CRG thanks the UGC–FIP for a Teacher Fellowship. The authors thank the Department of Science and Technology, India, for financial assistance under project No. SP/12/FOO/ 93. The authors also thank Professor P. K. Das, IPC, IISc, for SHG measurements.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, 0586–0588.
- Holy, A., Krupicks, J. & Arnold, Z. (1965). Collect. Czech. Chem. Commun. 30, 4127–4129.
- Molecular Structure Corporation (1992). *MSC/AFC Diffractometer Control Software*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1995). *TEXSAN*. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.